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Abstract. This paper presents a new methodology for automatic knowledge driven image
mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive
definite mappings from the original image space to a very high, possibly infinite dimensional
feature space. In that high dimensional feature space, linear clustering, prediction, and
classification algorithms can be applied and the results can be mapped back down to the
original image space. Thus, highly nonlinear structure in the image can be recovered through
the use of well-known linear mathematics in the feature space. This process has a number
of advantages over traditional methods in that it allows for nonlinear interactions to be
modelled with only a marginal increase in computational costs. In this paper, we present
the theory of Mercer Kernels, describe its use in image mining, discuss a new method to
generate Mercer Kernels directly from data, and compare the results with existing algorithms
on data from the MODIS (Moderate Resolution Spectral Radiometer) instrument taken
over the Arctic region. We also discuss the potential application of these methods on the
Intelligent Archive, a NASA initiative for developing a tagged image data warehouse for the
Earth Sciences.
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1. Introduction

Currently, the Earth Observing satellites are generating multi- and hyper-spectral data
at an extraordinary rate, with some systems generating data at the rate of 100 Gigabytes per
hour. This data contains information vital to the understanding of the Global Ecosystem at
many temporal and spatial scales. However, the vast majority of the data is archived without
ever being analyzed or understood. Many scientists take extremely small samples, most of the
time comprising only a few hundred or thousand images for analysis. Traditional data mining
methods such as clustering and classification have been applied to image understanding
problems with good success [4, 1]. In the results section below, we show the performance of
a neural network to represent a traditional data mining method, and also the output of a
support vector machine, which is a kernel method.

This paper addresses the problem of automatically mining the multispectral images
using Mercer Kernels with the hope of finding a method to automatically generate tags
for images that indicate the percentage of cloud cover, the percentage of presence of other
geophysical processes such as snow, ice, melting regions, drought regions, and fire hazard.

We begin by giving a brief introduction to kernel functions. It is important to note
that the kernel methods discussed here have little relation to the established notions of kernel
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density estimation (such as mixtures of Gaussians, Parzen windows, etc.) The hyperspectral
spatiotemporal random function Zt(α, β, λ) represents a series of length T of three dimen-
sional data cubes of size (n× n×Λ), where n denotes the number of pixels in one direction
(assuming square images, without loss of generality), Λ denotes the total number of measured
wavelengths, and T denotes the total number of time samples [2]. 1 One interpretation of a
kernel function views them as a similarity metric. A common measure of similarity between
two spatial locations (α, β) and (α′, β′) at a given time τ0 is captured in the (n × n) linear
covariance matrix Kτ0(α, β, α′, β′) = Cov(Zτ0(α, β, λ), Zτ0(α

′, β′, λ)). To generalize this
notion of covariance, one can introduce a highly nonlinear function Φ that maps data from
the Λ dimensions to a high (possibly infinite) dimensional feature space[3]: Φ : RΛ 7→ H.
Thus, we can rewrite the above covariance matrix in terms of the mapped data as follows:

KΦ
τ0

(α, β, α′, β′) = Cov(Φ(Zτ0(α, β, λ)), Φ(Zτ0(α
′, β′, λ)))

=
1

Λ

Λ∑

λ=1

[Φ(Zτ0(α, β, λ))− Φ(mτ0(λ))][Φ(Zτ0(α
′, β′, λ))− Φ(mτ0(λ))]T∀α, β = 1...n.

Once a mapping Φ is prescribed, one can perform linear operations in the feature space and
map the results back to the original Λ dimensional space. An interesting and extremely
valuable area of research is to design the mapping Φ from the data itself and from domain
knowledge. Φ does not need to be determined explicitly, since in the above calculation,
only inner products arise. A kernel function is defined as the inner product of the mapped
data in the feature space. We will address the problem of designing kernel functions by
expressing the similarity between two samples of data using knowledge of the physics of
the domain. Unlike most other machine learning methods, kernel methods offer a unified
framework to encode knowledge of the underlying physics in clustering, classification, and
regression, which are common machine learning tasks. We have already conducted research
using kernel methods for discovering snow, ice, and clouds in multispectral images with very
promising preliminary results (see Figures belo). In the full paper, we will discuss the Mixture
Density Mercer Kernels, which allow for a Bayesian probabilistic model for the hyperspectral
data using a mixture distribution with prior probabilities, thus encoding the physics of the
domain into the model. The likelihood of a hyperspectral signal zi is given by P (zi|M) where
M denotes the model. A kernel function can be constructed by taking the following product
of likelihoods, which encodes an independence assumption: K(zi, zj) = P (zi|M)P (zj|M).
Existing Kernels We will extensively test the existing set of kernels to determine the degree
of improvement of our method compared to existing methods.

2. Image Segmentation over Snow and Ice

In this section, we describe the performance these algorithm on a real-world image
segmentation problem. We obtained MODIS level 1B data for the Greenland ice sheet from
the NASA Langley DAAC and mapped the data to a 1.25 km equal-area scalable Earth-
grid (EASE-grid) using software developed by NSIDC to process MODIS level 1B data and
convert the visible channel data to top-of-the-atmosphere (TOA) reflectances. Next the TOA
reflectances were normalized by the cosine of the solar zenith angle. Only the first 7 MODIS
channels were used for this study.

1We maintain the notion of temporal data to explicitly describe the fact that the methods discussed here
can explicitly model time-dependent behavior.
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Figure 1. (Upper Left) This figure shows the output of Channel 6 for day
140 in the year of 2000 from the MODIS instrument over Greenland. Clouds
are characterized by regions of greater density of white. (Upper Right) Shows
the prediction of a multilayer perceptron with 5 inputs and 5 hidden units on
the training data in the Upper Left. The bottom left panel shows a sample
test image with and the bottom right shows the performance of the multilayer
perceptron on the test data.

Figure 2. (Upper Left) This figure shows prediction of a Support Vector
Machine using a Gaussian Mercer Kernel for day 140 in the year of 2000 from
the MODIS instrument over Greenland. Clouds are characterized by regions
of greater density of red. The remaining panels show the performance of the
SVM on other test images.

3. Conclusions

A direct comparison of the traditional neural network (multilayer perceptron) model
and the Mercer Kernel Support Vector Machine indicates that the kernel method may give
better predictions which are more robust over areas where detection of geophysical processes
is difficult, such as the detection of clouds over snow and ice.
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